Dauer larva quiescence alters the circuitry of microRNA pathways regulating cell fate progression in C. elegans.
نویسندگان
چکیده
In C. elegans larvae, the execution of stage-specific developmental events is controlled by heterochronic genes, which include those encoding a set of transcription factors and the microRNAs that regulate the timing of their expression. Under adverse environmental conditions, developing larvae enter a stress-resistant, quiescent stage called 'dauer'. Dauer larvae are characterized by the arrest of all progenitor cell lineages at a stage equivalent to the end of the second larval stage (L2). If dauer larvae encounter conditions favorable for resumption of reproductive growth, they recover and complete development normally, indicating that post-dauer larvae possess mechanisms to accommodate an indefinite period of interrupted development. For cells to progress to L3 cell fate, the transcription factor Hunchback-like-1 (HBL-1) must be downregulated. Here, we describe a quiescence-induced shift in the repertoire of microRNAs that regulate HBL-1. During continuous development, HBL-1 downregulation (and consequent cell fate progression) relies chiefly on three let-7 family microRNAs, whereas after quiescence, HBL-1 is downregulated primarily by the lin-4 microRNA in combination with an altered set of let-7 family microRNAs. We propose that this shift in microRNA regulation of HBL-1 expression involves an enhancement of the activity of lin-4 and let-7 microRNAs by miRISC modulatory proteins, including NHL-2 and LIN-46. These results illustrate how the employment of alternative genetic regulatory pathways can provide for the robust progression of progenitor cell fates in the face of temporary developmental quiescence.
منابع مشابه
Reversal of cell fate determination in Caenorhabditis elegans vulval development.
In Caenorhabditis elegans, the fates of the multipotent vulval precursor cells (VPCs) are specified by intercellular signals. The VPCs divide in the third larval stage (L3) of the wild type, producing progeny of determined cell types. In lin-28 mutants, vulva development is similar to wild-type vulva development except that it occurs precociously, in the second larval stage (L2). Consequently, ...
متن کاملC. elegans DAF-18/PTEN Mediates Nutrient-Dependent Arrest of Cell Cycle and Growth in the Germline
The molecular pathways that link nutritional cues to developmental programs are poorly understood. Caenorhabditis elegans hatchlings arrest in a dormant state termed "L1 diapause" until food is supplied. However, little is known about what signal transduction pathways mediate nutritional status to control arrest and initiation of postembryonic development. We report that C. elegans embryonic ge...
متن کاملThe developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans.
Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key tran...
متن کاملInhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling.
In C. elegans, reduced insulin-like signalling induces developmental quiescence, reproductive delay and lifespan extension. We show here that the C. elegans orthologues of LKB1 and AMPK cooperate during conditions of reduced insulin-like signalling to establish cell cycle quiescence in the germline stem cell population, in addition to prolonging lifespan. The inactivation of either protein caus...
متن کاملSequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival
Mechanistic basis governing the extreme longevity and developmental quiescence of dauer juvenile, a "non-ageing" developmental variant of Caenorhabditis elegans, has remained largely obscure. Using a lipidomic approach comprising multiple reaction monitoring transitions specific to distinct fatty acyl moieties, we demonstrated that in comparison to other developmental stages, the membrane phosp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 139 12 شماره
صفحات -
تاریخ انتشار 2012